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Disclaimers

None of us are experts in U.S. elections.

But, 2020 and 2024 U.S. presidential elections present a very unique
opportunity to study transportability/generalizability in U.S. elections.

Comments/Critiques are highly appreciated!
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Motivation: 2020 Digital Ad Campaign
[Aggarwal et al., 2023]

▶ Would online ads against Donald Trump affect voter turnout in
five battleground states: AZ, MI, NC, PA, and WI?

▶ Ran a stratified randomized experiment in February 2020 to
November 2020.

Nearly two million registered voters (1, 999, 282).
Stratified by gender, race, and age groups (all discrete).

▶ Treatment group (85.6% of participants): an average of 754 ads
against Trump on social media by Acronym, a left-leaning
organization.

▶ Control group: no ads from Acronym.
▶ Outcome: voted in 2020 U.S. election? (binary)
▶ Analysis tool: linear regression.
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Example Political Ads in Treatment Group
Ads were on Facebook, Instagram, and Outbrain advertising network.

(a): ads promoting news stories (b): traditional video campaign ads
4 / 28



Results and Takeaways from Aggarwal et al. (2023)
The effect was difference in voting turnout between treated and control.

▶ Negative effect: ad against Trump decreased voter turnout.
For example, a Trump supporter may choose not to vote after
seeing ads against Trump.

▶ Positive effect: ad against Trump increased voter turnout.
For example, a Biden supporter may be encouraged to vote by ads
against Trump.

Overall ATE on turnout: −0.06% (SE = 0.12%).

▶ “...we can affirm that our overall estimate is effectively equivalent to zero...”

A quote that grabbed our attention and motivated this work:
“One reasonable question for our study is how well our findings would
generalize...to other electoral contexts....it could be that the 2020 election was
exceptional because of COVID and the idiosyncrasies of the candidates, so perhaps
digital advertising would have larger effects in more typical settings....”
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Key Question: Would the Negative Ad Against Trump
Remain Ineffective in 2024?
2024 election provides a unique opportunity to study this question.

Some similarities between 2020 and 2024:

▶ Same presumptive candidates from major political parties (Biden,
Trump)1. Both candidates are seeking a second term2.

▶ Nearly similar treatment/ad campaigns (i.e. ad against Trump).

▶ Recent polls suggest economy is still a major concern for voters.

Some notable differences:

▶ 2020: COVID-19, death of George Floyd and racial unrest, etc.

▶ 2024: abortion, immigration, Ukraine/Israel, etc.

1Last time this occurred was in 1956.
2Last time this occurred was in 1892.

6 / 28



Key Question: Would the Negative Ad Against Trump
Remain Ineffective in 2024?
2024 election provides a unique opportunity to study this question.

Some similarities between 2020 and 2024:

▶ Same presumptive candidates from major political parties (Biden,
Trump)1. Both candidates are seeking a second term2.

▶ Nearly similar treatment/ad campaigns (i.e. ad against Trump).

▶ Recent polls suggest economy is still a major concern for voters.

Some notable differences:

▶ 2020: COVID-19, death of George Floyd and racial unrest, etc.

▶ 2024: abortion, immigration, Ukraine/Israel, etc.
1Last time this occurred was in 1956.
2Last time this occurred was in 1892.

6 / 28



Our Contribution: Application-Driven Setup &
Methods

▶ “Design” elements:
Allows for covariate shift.
Does not assume same covariates between 2020 and 2024.
Does not assume the transportability.

pr(voted if given ad | 2024 (i.e. target), voter demographics)
̸=pr(voted if given ad | 2020 (i.e. source), voter demographics)

▶ “Analysis” elements:
Simple, design-inspired estimator.
One (theoretically) correct approach to bootstrapping in transfer
learning.
Efficient influence function based estimator.
“Demystifying” sensitivity analysis with source data calibration.
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Outline

▶ Notations and review

▶ Setup: Transfer learning with sensitivity analysis

▶ Estimators of the target ATE

▶ Preliminary data analysis on Pennsylvania
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Notation and Review

Notation and Causal Assumptions

▶ Population type: S ∈ {0, 1} where S = 1 is source (e.g. 2020) and
S = 0 is target (e.g. 2024).

▶ Outcome: Y ∈ {0, 1} where Y = 1 is voted.

▶ Treatment: A ∈ {0, 1} where A = 1 is ad against Trump.
▶ Covariates: X where

Source covariates: X,

Target covariates: V ⊂ X.

▶ Potential outcomes: Y (a) ∈ {0, 1}, a ∈ {0, 1}.
Y (1): voted if, contrary to fact, voter got negative ad.

Y (0): voted if, contrary to fact, voter did not get negative ad.
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Notation and Review

Data Table for Our Setup
X︷ ︸︸ ︷

S V X \ V A Y (1) Y (0) Y

Source RCT (ns)

1 ✓ ✓ 1 ✓ ✓
...

...
...

...
...

...
1 ✓ ✓ 1 ✓ ✓
1 ✓ ✓ 0 ✓ ✓
...

...
...

...
...

...
1 ✓ ✓ 0 ✓ ✓

Target (nt)
0 ✓
...

...
0 ✓

The goal is to identify and estimate the average treatment effect (ATE)
on the target,

θ = E[Y (1) − Y (0) | S = 0].
10 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).

The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).
There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.
(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.

11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).
The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).
There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.
(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.

11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).
The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).

There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.
(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.

11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).
The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).
There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.
(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.

11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).
The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).
There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.

(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.

11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).
The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).
There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.
(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.

11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).
The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).
There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.
(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.

11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions on
the Source
Causal assumptions on the source (under stratified RCT):

(A1) SUTVA: Under S = 1, if A = a, Y = Y (a).
The observed Y is one realization of the two potential outcomes.

There are no multiple versions of treatment, e.g.,

Y (700 ads) = Y (800 ads) = Y (1).
There is no interference: a voter’s voting result cannot be affected
by other voters’ treatments.

(A2) Randomized treatment: A ⊥ Y (1), Y (0) | X, S = 1.
(A3) Overlap of A: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1.

The treated individuals and untreated individuals have a common
support of X.

The propensity score π(x) is known in an RCT.
11 / 28



Notation and Review

Review of Transportability in an RCT: Assumptions for
Transportation

Transportation assumptions:
(A4) Overlap of S: 0 < pr(S = 1 | V = v) < 1 for all v.

The source voters and target voters have a common support of V.

(A5) Transportability: Y (1), Y (0) ⊥ S | V.

For any v,
pr(Y (a) = 1 | V = v, S = 0) = pr(Y (a) = 1 | V = v, S = 1).

It is often assumed, but cannot be verified.

We assume it for now, but will relax it shortly!
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Notation and Review

Review: Identification Under (A1)-(A5)

Let µa(X) = E[Y | X, A = a, S = 1]. Under (A1)-(A5), the target ATE
is identified:

θ = E[Y (1) − Y (0) | S = 0]
= E[E[µ1(X) − µ0(X)︸ ︷︷ ︸

ATE(X) in source

| V, S = 1]

︸ ︷︷ ︸
ATE(V) in source

| S = 0]

︸ ︷︷ ︸
Reweigh ATE(V) to target

.

For reference, when X = V, we have

θ = E[E[µ1(X) − µ0(X) | S = 0].

13 / 28



Setup: Transfer Learning with Sensitivity Analysis

What If Transportability (A5) Fails?
Sensitivity Analysis
Suppose transportability (A5) does not hold:

pr(Y (1), Y (0) | V, S = 0)︸ ︷︷ ︸
unobserved target (2024)

̸= pr(Y (1), Y (0) | V, S = 1)︸ ︷︷ ︸
observed source (2020)

, then

Odd(Y(a)|V,S = 0) := pr(Y (a) = 1 | V, S = 0)
1 − pr(Y (a) = 1 | V, S = 0)

̸= pr(Y (a) = 1 | V, S = 1)
1 − pr(Y (a) = 1 | V, S = 1) := Odd(Y(a)|V,S = 1) .

For each Y (a), we measure the deviation between the unobserved target the source
counterpart via odds ratios (see formulation for a continuous outcome in Appendix):

exp(γa) = Odd(Y (a) | v, S = 0)
Odd(Y (a) | v, S = 1) , γa ∈ (−∞, ∞). (1)

▶ When γa = 0, exp(γa) = exp(0) = 1 = Odd(Y (a) | v, S = 0)
Odd(Y (a) | v, S = 1) =⇒ (A5) holds.

▶ When γa ̸= 0, (A5) does not hold; γa measures the degree of violation to (A5).

14 / 28
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Odd(Y (a) | v, S = 1) =⇒ (A5) holds.

▶ When γa ̸= 0, (A5) does not hold; γa measures the degree of violation to (A5).
14 / 28



Setup: Transfer Learning with Sensitivity Analysis

Interpreting Sensitivity Parameter γa

Sensitivity model: exp(γa) = Odd(Y (a) | v, S = 0)/Odd(Y (a) | v, S = 1).
▶ When γa = 0, the transportability (A5) holds.

▶ When γa ̸= 0, larger |γa| ⇒ larger differences between 2024 and 2020.
▶ Positive γ1 ⇒ more turnout in 2024 after receiving ads against Trump

compared to that in 2020.
▶ Negative γ1 ⇒ less turnout in 2024 after receiving ads against Trump

compared to that in 2020.

Toy example: pr(Y (a) = 1 | V, S = 1) = expit(−0.1V ).
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Setup: Transfer Learning with Sensitivity Analysis

Identification Under (A1)-(A4) + Sensitivity Model

Recall µa(X) = E(Y | X, A = a, S = 1). Under (A1)-(A4) and the sensitivity model,

E[Y (a) | S = 0] = E

[
E{exp(γa)µa(X) | V, S = 1}

E{exp(γa)µa(X) + 1 − µa(X) | V, S = 1}

∣∣∣∣∣S = 0

]
.

▶ When γa = 0, transportability (A5) holds, we return to the previous result:

E[Y (a) | S = 0] = E[E[µa(X) | V, S = 1] | S = 0].

▶ When γa ̸= 0, it is an exponential tilt of ρa(V) = E[µa(X) | V, S = 1].
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Estimation of the Target ATE

A Simple, Designed-Inspired Estimator and Its Inference
▶ A simple, design inspired estimation procedure.

(1) Estimate ρa(V) = E[µa(X) | V, S = 1] from source data.

• An example: for a = 1, regress Y/π̂(X) on V to get ρ̂1(V).

(2) Average the exponentially tilted ρ̂a(V) among target sample,

Ê[Y (a) | S = 0] = 1
nt

∑
i∈Target

exp(γa)ρ̂a(vi)
exp(γa)ρ̂a(vi) + 1 − ρ̂a(vi)

,

θ̂(γ1, γ0) = Ê[Y (1) | S = 0] − Ê[Y (0) | S = 0].

Since our voter data is discrete, the plug-in estimator is nonparametric and
efficient ([Chamberlain, 1987, Theorem 1]).

▶ Constructing a 1 − α CI of θ (see Appendix for details).
At each iteration b, bootstrap the source data and target data
separately, construct an estimator θ̂∗

b with resampled data.

After B iterations, take α/2 and 1 − α/2 quantiles of
{

θ̂∗
b

}B

b=1
.
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Estimation of the Target ATE

Estimator Based on Efficient Influence Function

For a given γa, we have the efficient influence function (EIF) of θ.

▶ The EIF is very messy because (a) V ̸= X and (b) sensitivity
analysis; see Appendix.

▶ Our EIF recovers [Zeng et al., 2023]’s EIF when γa = 0.

Practically, an EIF-based estimator is useful if V is continuous.

▶ Four nuisance functions: (i) propensity score π(X), (ii) outcome
regression µa(X), (iii) projection of outcome regression ρ(V), and
(iv) weights between source and target
w(V) = p(V | S = 0)/p(V | S = 1).

▶ To avoid Donsker conditions, we need cross-fitting in source data.

▶ The estimator is not doubly robust for γa ̸= 0.

▶ Also, the estimator does not reduce “plug-in bias” from ρa(V).
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Preliminary Data Analysis on Pennsylvania

Target Data: Registered Voters in Pennsylvania (PA)

▶ 4,880,730 registered voters (as of Apr.15, 2024) from 67 counties.
▶ V: age group, gender, party, an incomplete voting history.

X\V: race, missing voting history.

▶ We look at each county in Pennsylvania
nt ranges from 1,117 to 685,620; median is 25,182.

▶ For sensitivity parameters, we use −0.05 ≤ γa ≤ 0.05
(0.951 ≤ exp(γa) ≤ 1.051).

▶ For inference, we use the simple plug-in estimator with bootstrap.
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Preliminary Data Analysis on Pennsylvania

Example of Sensitivity Contours
▶ When γ1 = γ0 = 0 (transportability (A5) holds; 2024 ≈ 2020), all

effects remain insignificant.
▶ When γ1γ0 ̸= 0 ((A5) does not hold; 2024 ̸= 2020), the effect can

be significant under 0.05 level.
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Preliminary Data Analysis on Pennsylvania

The Most and Least Sensitive Counties

We calculate the smallest exp(|γ1 − γ0|) that turns the ATE significant.

▶ A lower value indicates a smaller difference between 2024 and 2020 can make
the ad to significantly affect the voter turnout =⇒ more sensitive.

▶ A higher value indicates only a large difference between 2024 and 2020 can
make the ad to significantly affect the voter turnout =⇒ less sensitive.

Table 1: The most and least sensitive counties.

Positive ad effects Negative ad effects
County exp(|γ1 − γ0|) County exp(|γ1 − γ0|)

Most Sensitive Philadelphia 1.018 Bedford 1.002
Monroe 1.028 Fulton 1.002

Least Sensitive
Bedford 1.010 Allegheny 1.041
Fulton 1.105 Philadelphia 1.062
Clinton - Clinton -
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Preliminary Data Analysis on Pennsylvania

Calibrating Sensitivity Parameters
In sensitivity analysis, there is always a question about what is a
“large”, “small”, or a “plausible” sensitivity parameter γa.

We present one solution to this question by creating dis-similar
partitions of the source data.

(1) Partition source into two “dissimilar” subpopulations (i.e. subpopulations are
not similar after adjusting for covariates).

For example, in [Aggarwal et al., 2023], we created [PA,MI,WI] (“blue
collar states”) and [NC,AZ] (“not blue collar states”).

(2) Use one partition as source, the other as target.

For each (γ1, γ0) pair, we obtain the CI of the transported ATE
(transported CI).
Because the RCT has been run on this target, we have the CI of the
target ATE (oracle CI).

(3) Let the subset C ⊂ R2 be the range of (γ1, γ0) pairs where the corresponding
transported CI overlaps with the oracle CI.

The γa’s from PA that overlap with the subset C are “plausible”.
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Preliminary Data Analysis on Pennsylvania

Examples of Calibrations
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Preliminary Data Analysis on Pennsylvania

Calibrated Results for Positive Ad Effects

Figure 1: The smallest exp(γ1 − γ0) turns ATE significant when γ1 > γ0.

▶ Nine counties could have a positive ad effect.

Receiving ads against Trump may increase their turnout.
They are mostly near urban-ish (Philadelphia, Pittsburgh, suburbs of
Philadelphia) or college towns (i.e. Centre county).
Northampton is a “pivot” county3 (Biden won by 1,233 votes; 172,065
voters voted).

▶ Biden has won all of the nine counties in the 2020 election.

Biden leaners may be encouraged to vote by ads against Trump; this
aligns with analyses in [Aggarwal et al., 2023] stratified by Trump
supporting score.

3From Ballotpedia
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Preliminary Data Analysis on Pennsylvania

Calibrated Results for Negative Ad Effects

Figure 2: The smallest exp(γ0 − γ1) inducing significance when γ0 > γ1.
▶ Most counties could have a negative ad effect.

Receiving ads against Trump may discourage them to vote.
The most sensitive counties are Fulton and Bedford; smallest
exp(γ0 − γ1) = 1.002.
They have the largest margin for Trump (85.41% for Trump in Fulton;
83.39% for Trump in Bedford) in 2020 U.S. presidential election.

▶ Three swing counties may have ad effects in either direction: Centre, Lehigh,
Northampton.
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83.39% for Trump in Bedford) in 2020 U.S. presidential election.

▶ Three swing counties may have ad effects in either direction: Centre, Lehigh,
Northampton.
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Preliminary Data Analysis on Pennsylvania

Some Preliminary Takeaways from PA

▶ If transportability (A5) holds (i.e. 2020 ≈ 2024), all counties will
have near zero ad effects in 2024.

▶ If (A5) fails, a few counties could have positive ad effects, whereas
most could have negative ad effects in 2024.

The direction largely depends on their leaning towards
Trump/Biden (Republican/Democrat).

Counties with mostly Trump leaners are likely to vote less, whereas
counties with Biden leaners will vote more.

The direction can go either way in swing counties.
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Summary and Ongoing Work

▶ Motivation: From [Aggarwal et al., 2023], would the negative ad
against Trump in 2020 remain ineffective in 2024?

▶ Our approach: transfer learning with sensitivity analysis
Setup: (a) source is from RCT, (b) V ̸= X, (c) data is discrete.

Analysis: (a) simple plug-in estimator with bootstrap SE/CIs, (b)
EIF-based approach, (c) calibration of sensitivity parameters with
source data.

▶ Preliminary analysis of Pennsylvania.
▶ Ongoing work

Repeat analysis with other states (WI, NC and GA).

Use 2022 U.S. midterm elections to improve θ̂ and to improve
calibration.
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Appendix

FAQs
▶ Is the calibration reasonable?

Great question! We’re also experimenting with the “right” way to
assess whether a give γ value is extreme or not.

▶ Why is your voter data all discrete?
We’re not sure and this surprised us too. Perhaps, this is done to
preserve some privacy?

▶ Is party registration measured accurately?
Yes and no. [Aggarwal et al., 2023] and current voter
registration data documentation discuss some reasons for errors.

▶ Is your conclusion sensitive to data quality from 2024 voter
registration data (i.e. target data)?
Yes. Unfortunately, high quality target data is expensive.

▶ What about treating this data as longitudinal?
Excellent idea, but this requires measuring same voter over time.

▶
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Appendix

Some Prior Works

The closest related literature is transportability/generalizability.

We are definitely not the only ones to incorporate sensitivity analysis
in transportability/generalizability. A very small, partial list:

▶ Linear, outcome sensitivity model: [Nguyen et al., 2017,
Dahabreh et al., 2020, Dahabreh et al., 2023, Zeng et al., 2023]

▶ Exponential tilting sensitivity model: [Dahabreh et al., 2022]

▶ Marginal sensitivity model for transfer learning functionals:
[Nie et al., 2021]

▶ Omitted variable bias approach with weighted estimators:
[Huang, 2024]

Our goal is to tailor these methods to address our key questions.
8 / 14



Appendix

Two-Parameter Sensitivity Model and Some Remarks
To jointly characterize Y (1), Y (0), we use the following model

pr(Y (1) = y1, Y (0) = y0 | V = v, S = 0)
∝ exp(γ1y1 + γ0y0) · pr(Y (1) = y1, Y (0) = y0 | V = v, S = 1)

Some remarks:

▶ The sensitivity model does not place any observable restrictions on
the observed data [Robins et al., 2000, Franks et al., 2019]

▶ A pseudo-R2 version of γa is in Proposition 3 of
[Franks et al., 2019].

▶ The sensitivity model can depend on covariates (exp(γ⊺
vv + ...))

▶ Some works that use this model: [Robins et al., 2000,
Franks et al., 2019, Scharfstein et al., 2021, Dahabreh et al., 2022]

▶ There is a long and healthy debate about what constitutes a
“good” sensitivity analysis. 9 / 14



Appendix

Alternative Formulation: Exponential Tilting Model

The selection odds model (1) can be equivalently written as

p(y(a) | V, S = 0) ∝ exp{γay(a)} · p(y(a) | v, S = 1). (2)

Under (A1)-(A4) and (2), we can identify E(Y (a) | S = 0) as

E(Y (a) | S = 0) =

(
E [E {exp(γaY )Y | X, A = a, S = 1} V, S = 1]
E [E {exp(γaY ) | X, A = a, S = 1} V, S = 1]

∣∣∣∣∣S = 0

)
.
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Appendix

Bootstrapping for Transfer Learning

We lay out one (theoretically valid) bootstrap for transfer learning
with sensitivity analysis.

In each bootstrap iteration b ∈ {1, · · · , B}:

(1) Resample source data with replacement of size ns, obtain data D∗
S .

(2) Resample target data with replacement of size nt, obtain data D∗
T .

(3) With D∗
S and D∗

T , construct the ATE estimator θ̂∗
b from above.

Take α/2 and 1 − α/2 quantiles of
{

θ̂∗
b

}B

b=1
as a 1 − α CI of θ.

Theorem: If ρ(V) is smooth enough and Donsker condition holds, the
above procedure yields a valid 1 − α CI of θ.

The smoothness + Donsker conditions hold for our discrete voter data.
[Return to main slides.]
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Appendix

Voter Demographics Between Source and Target
Population

Figure 3: Registered voter demographics.
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Appendix

Preliminary Result for PA: A Larger V Robustifies
Conclusions

Figure 4: The smallest exp(|γ1 − γ0|) that makes θ̂(γ1, γ0) significant. Left
considers the case where γ1 > γ0 and right considers the case when γ1 < γ0.
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Appendix

EIF-Based Estimator
θ̂EIF,a =

1
ns

∑
i∈Source

ŵ(vi)
({

ai

π̂(xi)
+ 1 − ai

1 − π̂(xi)

}[
eγayi yi

eγa ρ̂(vi) + 1 − ρ̂(vi)
− eγa µ̂a(xi)

eγa ρ̂(vi) + 1 − ρ̂(vi)

− eγayi ρ̂a(vi)
[eγa ρ̂a(vi) + 1 − ρa(vi)]2

+ {eγa µ̂a(xi) + 1 − µ̂a(xi)}eγa ρ̂(vi)
[eγa ρ̂a(vi) + 1 − ρa(vi)]2

]
+ µ̂a(xi){eγa ρ̂(vi) + 1 − ρ̂(vi)} − ρ̂a(vi){eγa µ̂a(xi) + 1 − µ̂a(xi)}

[eγa ρ̂a(vi) + 1 − ρa(vi)]2

)
+ 1

nt

∑
i∈Target

eγa ρ̂a(vi)
eγa ρ̂a(vi) + 1 − ρ̂a(vi)

.

When γa = 0, it collapses to [Zeng et al., 2023]:

= 1
ns

∑
i∈Source

ŵ(vi)
(

ai

π̂(xi)
+ 1 − ai

1 − π̂(xi)

)
[yi − µ̂a(xi)]+

1
ns

∑
i∈Source

ŵ(vi)[µ̂a(xi) − ρ̂a(vi)] + 1
nt

∑
i∈Target

ρ̂(vi).

[Return to main slides.] 14 / 14
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