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Two-Slide Overview: Motivation

“Science is about generalization, and generalization requires that conclusions obtained in the labora-
tory be transported and applied elsewhere” [Pearl and Bareinboim 2014]

Population X O Goal
Q (Target) D

ψ(QO,X )
P (Source) D D

A common task: studying a summary of a target distribution
QO,X , denoted as ψ(QO,X ), where only the marginal QX can be
identified.

X O PO,X QX ψ(QO,X )

Effect generalization Baseline Potential outcome Peru India EQO,X (O)
LLM [Mirzadeh et al. 2024] Math question Correct/Incorrect (1/0) Sophie Julia prQO

(O = 1)

However, the conditional exchengeability is made on unobserved data and cannot be verified.
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To borrow from PO,X , the conditional exchangeability assumption is widely adopted:

QO|X (· | x) = PO|X (· | x), a.e. QX . (1)

For example,

ψ(QO,X ) = EQO(O)

= EQX

[
EQO|X (O | X)

]
= EQX

[
EPO|X (O | X)

]
.
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Two-Slide Overview: Contribution
▶ Our work: If conditional exchengeability is implausible, should we (a) still borrow from PO,X ? (b) still

report the mean?
Are all source distributions (PO,X ) and estimands (ψ) equally “good/bad” when conditional
exchengeability doesn’t hold?

▶ Let Qγ
O,X be the distribution of QO,X when conditional exchengeability is “violated” by some magnitude

γ ∈ R, where γ = 0 implies conditional exchengeability.
▶ We propose a scalar summary, SLOPE. Higher |SLOPE| ⇒ more sensitive to violations.
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Outline

1 Proposal: SLOPE

2 Data Application

3 Summary

3 / 18



Notation and Review of Key Concepts

▶ Target distribution: QO,X of (O,X) where O ∈ R and X ∈ X ⊂ Rd .
▶ Scientific interest: a low dimensional ψ(QO,X ) with ψ(·) defined by investigator.
▶ We only have access to QX and a related source distribution PO,X .

In order to identify the functional ψ(QO,X ) using the random sample from PO,X and QX , two assumptions
are often imposed.

Assumption 1 (Overlap)

QX is absolute continuous with respect to PX .

Assumption 2 (Conditional Exchangeability)

QO|X (· | x) = PO|X (· | x) almost everywhere QX .

Under Assumptions 1-2, the target functional can be identified:

ψ(QO,X ) = ψ(QX × QO|X ) = ψ(QX × PO|X ).

Example functionals include the mean ψMEAN , median ψMED , and OLS coefficient ψOLS .
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What If Exchengeability Doesn’t Hold?
Sensitivity Analysis

Conditional exchengeability is made on the unobserved data and cannot be empirically verified [Nguyen et al.

2017; Nie, Imbens, and Wager 2021; Huang 2024]. Assuming it blindly can lead to distorted conclusions [Jin, Egami, and

Rothenhäusler 2024].

We follow the Robins’ sensitivity model [Robins, Rotnitzky, and Scharfstein 2000; Franks, D’Amour, and Feller 2020; Nabi

et al. 2024] and assume that the distribution QO|X is shifted from PO|X by an exponential tilting term exp(γo):

dQγ
O|X (o | x)

dPO|X (o | x)
∝ exp(γ · o), (2)

where we assume
∫
exp(γo)dPO|X (o, x) <∞.

▶ γ ∈ R is a sensitivity parameter that measures the unobserved differences between QO|X and PO|X .
▶ γ = 0 =⇒ conditional exchengeability holds.
▶ γ ̸= 0 =⇒ conditional exchengeability is violated.
▶ γ cannot be identified from data.

Examples:
▶ If PO|X ∼ N

(
µ(X), σ2(X)

)
, then (2) elicits a location shift, Qγ

O|X ∼ N
(
µ(X) + γσ2(X), σ2(X)

)
.

▶ If O is binary, then γ has an odds ratio interpretation, exp(γ) =
Qγ(O = 1 | X)/{1− Qγ(O = 1 | X)}
P(O = 1 | X)/{1− P(O = 1 | X)}

.
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SLOPE

Let Qγ
O,X = QX × Qγ

O|X .

Definition 1
The Sensitivity to LOcal Perturbation from Exchangeability (SLOPE) of
a functional ψ with respect to the perturbation (2) is

SLOPE(Q0
O,X , ψ) = lim

γ→0

ψ(Qγ
O,X )− ψ(Q0

O,X )

γ
, (3)

provided the limit exists.

▶ SLOPE is a (usually) scalar summary to summarize sensitivity of
an estimand when conditional exchangeability is violated in a
particular “direction”.

▶ Higher |SLOPE| =⇒ estimand changes drastically under local
violations =⇒ more sensitive.
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Remarks on the SLOPE (1/2)

▶ SLOPE(Q0
O,X , ψ) depends on the distribution Q0

O,X = QX × PO|X and the estimand ψ.
• SLOPE can be applied to choose source (PO|X ) and estimand (ψ) in order to be less sensitive to

violations of conditional exchengeability.

• SLOPE is a population level quantity which reflects the design instead of estimation; it does not
depend on any estimation procedure.

• We think this way of summarizing sensitivity can be broadly helpful.

▶ Additional remarks on interpretation.
• The unit of the SLOPE matches the unit of the estimand.
• SLOPE is a first-order violation of conditional
exchengeability, i.e.,

ψ(Qγ
O,X ) ≈ ψ(Q0

O,X ) + γ · SLOPE(Q0
O,X , ψ).

• SLOPE cannot identify the bias under violation (which is
unknown).
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Remarks on The SLOPE (2/2)

Technical remarks:

▶ Finding the form of the SLOPE is not difficult; it’s an exercise in
calculus if we can freely interchange integration and
differentiation.

▶ SLOPE can be consistently estimated under regularity
conditions; not covered in this talk.

▶ SLOPE does not exist for every estimand; e.g., signQO
(O).
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Example: SLOPE for Mean and Median

Let σ2(X) = varPO|X (O | X) be the conditional variance on the source population.

The SLOPE for the mean is

SLOPE(Q0
O,X , ψ

MEAN) = EQX{σ2(X)}. (SLOPE for Mean)

Under the conditional Gaussian model, PO|X ∼ N
(
µ(X), σ2(X)

)
, the SLOPE for the median is

SLOPE(Q0
O,X , ψ

MED) = EQX

σ2(X) · fPO|X (m1/2)

EQX

{
fPO|X (m1/2)

}
︸ ︷︷ ︸

 , (SLOPE for Median)

Weight

where m1/2 = F−1
Q0
O
(1/2) is the median and fPO|X is the density with respect to some measure.

SLOPE for location parameters depends heavily on heterogeneity of O in the source population. This
matches with existing insights that homogeneous ATE is easier to generalize [Tipton 2014].
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Connection To Literature

Prior works are mostly on estimators rather than estimands.
▶ Robust statistics: “...robustness signifies insensitivity to small deviations from the assumptions...”

[Huber 1981]
• SLOPE is analogous to the influence function (IF) [Hampel 1974] as a local derivative.

SLOPE(Q0
O,X , ψ) = lim

γ→0

ψ(Qγ
O,X )− ψ(Q0

O,X )

γ

IF(Q0
O,X , ψ, o, x) = lim

ε→0+

ψ((1− ε)Q0
O,X + εδo,x)− ψ(Q0

O,X )

ε

• For parameters defined through Z-estimation, SLOPE can be re-expressed with the IF (next slide).
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Connecting SLOPE with IF in Z-Estimation

Suppose the finite-dimensional parameter ψ is defined through

EQ0
O,X

{s(O,X , ψ)} = 0, (4)

where s is a known function.

Theorem 1 (SLOPE and Influence Function for Z-Estimation)

The SLOPE for ψ in (4) is

SLOPE(Q0
O,X , ψ) =

x
IF(O,X , ψ(Q0

O,X ))︸ ︷︷ ︸
Influence function

{O − µ(X)}︸ ︷︷ ︸
Direction of sensitivity

dPO|XdQX ,

where µ(X) = EPO|X (O | X), and IF(O,X , ψ(Q0
O,X )) is the influence function for ψ(Q0

O,X ) under Q
0
O,X .

SLOPE is a recentered integral of the IF, where the re-centering is determined by O − µ(X).
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Running Example: Transporting Potential Outcomes

▶ [Banerjee et al. 2015] conducted a multi-site RCT to evaluate the effect of the “Graduation Program”
on improving livelihoods of poor households in six countries (Ethiopia, Ghana, Honduras, India,
Pakistan, Peru).
• “...provides a holistic set of services, including the grant of a productive asset, to the poorest
households in a village”

▶ We treat one country as the source (P) and another as the target (Q) and investigate the sensitivity to
violations of conditional exchengeability between QO|X and PO|X .

▶ X is a categorical baseline measurement prior to intervention.
▶ O = Y(1) is the potential outcome under the intervention from “Graduation Program”.

▶ P = PO,X = PY(1),X : households in the source country (e.g., Honduras).

▶ Q = QO,X = QY(1),X : households in the target country (e.g., Ethiopia), where we only observe the
baseline QX .

▶ Identification of the SLOPE requires additional assumptions on PO,X (SUTVA, strong ignorability).

13 / 18



Application I: The Choice of Source Country
▶ Outcome: log-transformed total asset index (standardized total asset value in terms of goats in each

country). It ranges from −1.3 to 2.97.

Question: Which source country is the least sensitive?

Estimand (ψ) Source (PO|X )
Target (QX )
Ethiopia

Mean

Ethiopia
Ghana 0.13

Honduras 0.09
India 0.16

Pakistan 0.16
Peru 0.20
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Application I: The Choice of Source Country
▶ Outcome: log-transformed total asset index (standardized total asset value in terms of goats in each

country). It ranges from −1.3 to 2.97.

Question: Which source country / estimand is the least sensitive? Answer: Honduras / Median.

Estimand (ψ) Source (PO|X )
Target (QX )

Ethiopia Ghana Honduras India Pakistan Peru

Mean

Ethiopia 0.15 0.18 0.15 0.14 0.13
Ghana 0.13 0.10 0.10 0.11 0.13

Honduras 0.09 0.08 0.07 0.08 0.10
India 0.16 0.15 0.16 0.16 0.16

Pakistan 0.16 0.15 0.14 0.15 0.16
Peru 0.20 0.21 0.21 0.21 0.21

Median

Ethiopia 0.15 0.18 0.15 0.14 0.13
Ghana 0.11 0.10 0.09 0.09 0.11
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▶ The median is usually slightly better than the mean (i.e., has smaller SLOPE).
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Application II: The Choice of Linear Combinations of a Multi-variate Outcome

[Banerjee et al. 2015] reported the “physical health index”, which is the average of z-scores of three
variables:
▶ Did not miss work due to illness (work), Zwork between -4.3 and 7.0;
▶ Activities of daily living score (act), Zact between -3.2 and 1.1;
▶ Perception of health status (perc), Zperc between -2.3 and 4.5.

Question: Is there another way to define a physical health index so that it’s less sensitive during
generalization?

▶ Consider linear combinations:

wwork · Zwork + wact · Zact + wperc · Zperc,

where the original index has wwork = wact = wperc = 1/3.
▶ On the simplex of w = [wwork,wact,wperc]

T, we want to find the weight that yields the smallest SLOPE.
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Application II: The Choice of Linear Combinations of a Multi-variate Outcome

India (P)⇒ Ethiopia (Q)

★ [wwork,wact,wperc]
T = [0.10, 0.55, 0.35]T

Peru (P)⇒ Ethiopia (Q)

★ [wwork,wact,wperc]
T = [1, 0, 0]T
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Summary and contact

We propose a measure, sensitivity to local perturbation from exchangeability (SLOPE), that describes the
change in a functional ψ with respect to a local perturbation (2):

SLOPE(Q0
O,X , ψ) = lim

γ→0

ψ(Qγ
O,X )− ψ(Q0

O,X )

γ
,

provided the limit exists.

▶ SLOPE is a scalar summary for sensitivity to violation of the conditional exchengeability assumption.
▶ SLOPE guides two choices in design:

• Choosing the source population P .
• Choosing the estimand ψ(·).

▶ SLOPE connects to influence function (both conceptually and mathematically).
▶ Main limitations:

• SLOPE assesses the local sensitivity (in a linear approximation).
• SLOPE is not unit-less.

Contact: at ACIC or xinran.miao@wisc.edu
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Example Estimands ψ(·)

▶ Outcome mean: ψMEAN(QO,X ) which is

ψMEAN(QO,X ) = EQO,X (O) = EQX

[
EQO|X (O)

]
= EQX

[
EPO|X (O)

]
(By Assumptions 1-2).

▶ Outcome median: ψMED(QO,X ) such that

1/2 =
∫ ψMED

−∞
dQO =

∫ ∫ ψMED

−∞
dQO|XdQX

=

∫ ∫ ψMED

−∞
dPO|XdQX (By Assumptions 1-2).

▶ OLS coefficient: ψOLS(QO,X ) such that

0 = EQO,X

[
XXTψOLS − XO

]
= EQX

[
EPO|X

{
XXTψOLS − XO

}]
(By Assumptions 1-2).
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Examples of Exponential Tilt

dQγ
O|X (o | x)

dPO|X (o | x)
∝ exp(γ · o), (2)

▶ If PO|X ∼ N
(
µ(X), σ2(X)

)
, then (2) elicits a

location shift

Qγ
O|X ∼ N

(
µ(X) + γσ2(X), σ2(X)

)
.

▶ If O is binary, then γ has an odds ratio
interpretation,

exp(γ) =
Qγ(O = 1 | X)/{1− Qγ(O = 1 | X)}
P(O = 1 | X)/{1− P(O = 1 | X)}

.
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Why This Sensitivity Model?

dQγ
O|X (o | x)

dPO|X (o | x)
∝ exp(γ · o), (2)

▶ Used in non-ignorable missing data [Robins, Rotnitzky, and Scharfstein 2000], unmeasured
confounding in causal inference [Franks, D’Amour, and Feller 2020; Nabi et al. 2024], and effect
generalization [Dahabreh et al. 2022].

▶ Simple to interprete (i.e., exponential tilting; odds ratio); can reparametrize γ to pseudo-R2 [Franks,
D’Amour, and Feller 2020].

▶ Does not place restrictions on observed data.

▶ Makes inference of the SLOPE (next slide) tractable (e.g., asymptotic normality).
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Connection To Literature

Prior works are mostly on estimators rather than estimands.
▶ Robust statistics: “...robustness signifies insensitivity to small deviations from the assumptions...”

[Huber 1981]
• SLOPE is analogous to the influence function (IF) [Hampel 1974] as a local derivative.

SLOPE(Q0
O,X , ψ) = lim

γ→0

ψ(Qγ
O,X )− ψ(Q0

O,X )

γ

IF(Q0
O,X , ψ, o, x) = lim

ε→0+

ψ((1− ε)Q0
O,X + εδo,x)− ψ(Q0

O,X )

ε

• For parameters defined through Z-estimation, SLOPE can be re-expressed with the IF (next slide).
▶ Sensitivity analysis: our parametrization of Qγ

O|X as deviations from Q0
O,X = PO|X was proposed by

[Robins, Rotnitzky, and Scharfstein 2000].
• This line of work focuses on estimation/inference given γ ̸= 0 [Rotnitzky et al. 2001; Birmingham,
Rotnitzky, and Fitzmaurice 2003; Franks, D’Amour, and Feller 2020; Dahabreh et al. 2022; Nabi
et al. 2024].

▶ Other related works: [Rosenbaum 2004; Troxel, Ma, and Heitjan 2004; Ding and VanderWeele 2016;
Andrews, Gentzkow, and Shapiro 2017; Oster 2019; Cinelli and Hazlett 2020; Zhao, Small, and
Bhattacharya 2019; Colnet et al. 2023; Jin, Egami, and Rothenhäusler 2024].
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Example: SLOPE for Transporting the Mean
Suppose O ∈ R is an outcome variable. The target estimand is the outcome mean

ψMEAN(QO,X ) :=

∫
OdQO.

Under the sensitivity model (2), the target functional with sensitivity parameter γ is

ψMEAN(Qγ
O,X ) =

∫ ∫
O exp(γO)dPO|X∫
exp(γO)dPO|X

QX , (5)

The SLOPE can be calculated via calculus:

SLOPE(Q0
O,X , ψ

MEAN) =
∂ψMEAN(Qγ

O,X )

∂γ

∣∣∣∣∣
γ=0

= EQX{varPO|X (O | X)} := EQX{σ2(X)}.

▶ For a specific target (i.e., QX ), the choice of the PO|X determines the magnitude of σ2(X), and therefore
determines the magnitude of SLOPE.
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Intuition: Direction of Sensitivity

SLOPE(Q0
O,X , ψ) =

x
IF(O,X , ψ(Q0

O,X ))︸ ︷︷ ︸
Influence function

{O − µ(X)}︸ ︷︷ ︸
Direction of sensitivity

dPO|XdQX ,

To understand the “direction of sensitivity”, we consider a broader class of tilting,

dQγ
O|X (o,X)

dPO|X (o,X)
∝ ρ(o, x, γ),

where ρ(o, x, 0) = 1 and
∫
ρ(o,X , γ)dPO|X (o,X) ∈ (0,∞).

Then the SLOPE is

SLOPE(Q0
O,X , ψ) =

x
IF(D,X , ψ(Q0

O,X ))
[
ρ̇(O,X , 0)− EPO|X{ρ̇(O,X , 0))}

]
︸ ︷︷ ︸

Direction of sensitivity

dPO|XdQX ,

where ρ̇ is the derivative of ρ with respect to γ.
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Application I: The Choice of Source Country

Explanation: why does Honduras have the lowest SLOPE?
▶ Mathematically, σ2(X) is lower in Honduras.

• More heterogeneity in the source population⇒ more sensitive to violations of the
transportability assumption.

• It matches existing understanding about ease of generalizability when the treatment effect is
homogeneous (Tipton and Olsen 2018).

▶ Context-wise, treated households can choose an asset at their choice. In Honduras treated housholds
made less diverse choice of the asset.

Table.Most common choice of asset transfer among countries.

Ethiopia Ghana Honduras India Pakistan Peru
Sheep & goats (62%) Goats & hens (44%) Chickens (83%) Goats (52%) Goats (56%) Guinea pigs (64%)7 / 10



Application III: The Choice of Estimand

For all three outcome variables and all (source, target) pairs, we find the median to be in general less
sensitive than the mean, i.e., SLOPE(Q0

Y(1),X , ψ
MED) < SLOPE(Q0

Y(1),X , ψ
MEAN).

To investigate what if the data generation changes slightly, we consider a semi-synthetic simulation.
▶ A simplified scenario with binary X ∈ {1, 2} and Gaussian PY(1)|X :

Source: PY(1)|X=1 ∼ N(0, 0.52), PY(1)|X=2 ∼ N(µ2, σ22),

Target: q1 = QX (X = 1), q2 = QX (X = 2)

where µ2, σ22 , q1, q2 are estimated from data.
▶ Source PY(1)|X : Peru.
▶ Target (QX ): India (q1 = 0.2, q2 = 0.8) and a synthetic country (q1 = q2 = 0.5).
▶ Outcome: per capita consumption.
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Application III: The Choice of Estimand

Peru (P)⇒ India (Q), with PY(1)|X=1 ∼ N(0, 0.52), PY(1)|X=2 ∼ N(µ2, σ22).

Question: how would the choice of estimand change if the data changes a bit?
▶ We vary the variance σ22 and calculate the SLOPE in each case.
▶ For both mean and median, the SLOPE is increasing with σ22 .
▶ SLOPE for median ≤ SLOPE for the mean, where “=” happens when σ2 = σ1.

Answer: we still choose the median.
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Application III: The Choice of Estimand

Peru (P)⇒ India (Q), with PY(1)|X=1 ∼ N(0, 0.52), PY(1)|X=2 ∼ N( µ2 , σ22).
Question: how would the choice of estimand change if the data changes a bit?
▶ We vary the mean µ2 and calculate the SLOPE in each case.
▶ When q1 = q2 = 0.5, SLOPEs do not depend on µ2:

SLOPE(Qγ
Y(1),X , ψ

MEAN) = (σ21 + σ22)/2 ≥ σ1σ2 = SLOPE(Qγ
Y(1),X , ψ

MED).
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Application III: The Choice of Estimand

Peru (P)⇒ India (Q), with PY(1)|X=1 ∼ N(0, 0.52), PY(1)|X=2 ∼ N( µ2 , σ22).
Question: how would the choice of estimand change if the data changes a bit?
▶ We vary the mean µ2 and calculate the SLOPE in each case.
▶ When q1 = 0.2, recall that SLOPEs for mean and median are both weighted average of σ21 and σ

2
2 :

SLOPE(Qγ
Y(1),X , ψ

MEAN) = q1σ21 + q2σ22 does not change with µ2

SLOPE(Qγ
Y(1),X , ψ

MED) = w1σ
2
1 + w2σ

2
2 = σ22 + w2 (σ

2
2 − σ21)︸ ︷︷ ︸
≥0

, increases with µ2.
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