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Motivation: 2020 Digital Ad Campaign [Aggarwal et al. (2023) Nature Human
Behavior]

2020 Digital Ad Campaign in U.S. Presidential Election: How would
online ads against Donald Trump affect voter turnout in five battle-
ground states: AZ, MI, NC, PA, and WI?

▶ A stratified randomized experiment from Feb. 2020 to Nov. 2020 on
nearly 2 million voters

• Treatment group: an average of 754 ads against Trump by
Acronym

• Control group: no ads from Acronym
• Outcome: voted in 2020 U.S. election? (binary)

▶ Average treatment effect (ATE): difference in voter turnout between
treated and control groups

▶ Estimate: ÂTE = −0.06%, ŜE = 0.12% (insignificant)

“One reasonable question... is how well our findings would general-
ize... to other electoral contexts... it could be that the 2020 election
was exceptional because of COVID... perhaps digital advertising would
have larger effects in more typical settings...”
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This Talk: Would the Negative Ad Against Trump Remain Ineffective in 2024?

Ideal approach: running a randomized experiment in 2024.

However, ad campaigns are expensive: [Aggarwal et al. 2023]’s experiment costed $8.9 million USD

This work: a faster and cheaper solution by transfer learning + sensitivity analysis.
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Our Setup

▶ Estimand: Ad effect in 2024,

θ = E[Y(1)− Y(0)|2024 (i.e. target)]

• Y(1) is the potential outcome (voted or not) if a voter received ads against Trump.

• Y(0) is the potential outcome (voted or not) if a voter did not receive ads against Trump.

▶ Design

• Source: 2020 experiment from [Aggarwal et al. 2023]

• Target: 2024 voters in Pennsylvania (∼4.8 million from 67 counties as of April 15, 2024)

• 2024 covariates ⊂ 2020 covariates

▶ Allows

• Shift in voter demographics between 2024 and 2020 (i.e., covariate shift)

• Shift in voter turnout between 2024 and 2020 (sensitivity analysis):

pr(Y(a) | target (2024), voter demographics)︸ ︷︷ ︸
unobserved

̸= pr(Y(a) | source (2020), voter demographics), a = 0, 1
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Our Approach: Transfer Learning With Sensitivity Analysis

▶ Step I: Conduct inference under [Robins, Rotnitzky, and Scharfstein 2000]’s sensitivity model

▶ Step II: Find a plausible range of sensitivity parameters (i.e., calibration)
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Step I: Conduct Inference Under The Sensitivity Model
▶ (Γ0, Γ1) quantifies the unobserved shift in (Y(0),Y(1)) between 2024 and 2020 via an odds ratio model

Γa =
Odd(Y(a) | voter demographics, target (2024))
Odd(Y(a) | voter demographics, source (2020))

, Γa > 0, a = 0, 1.

• (Γ0, Γ1) = (1, 1) means 2024 ≈ 2020 (“transportability”, a widely adopted assumption);
• Otherwise, 2024 ̸= 2020 (sensitivity analysis).

▶ Calculate p-values using the proposed plug-in estimator (nonparametric) with bootstrap.
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Step II: Find A Plausible Range of Sensitivity Parameters (i.e., Calibration)

▶ Sensitivity parameter (Γ0, Γ1) is not identified since we did not run an experiment in 2024

▶ In sensitivity analysis, there is always a question about what is a “large”, “small”, or a “plausible”
sensitivity parameter (Γ0, Γ1)

▶ Domain experts may specify a range of sensitivity parameters C, and estimate the ad effect with
(Γ0, Γ1) ∈ C

▶ For investigators without such knowledge, we present one solution to this question by creating a
dis-similar partition of the source data
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Step II: Find A Plausible Range of Sensitivity Parameters (i.e., Calibration)

Key idea: Find (Γ0, Γ1)s that represent the unmeasured differences between two dissimilar source
subsets.
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Example: Calibrating Sensitivity Parameters in Philadelphia

We focus on the change of conclusions before and after sensitivity analysis:

Before: (Γ0, Γ1) = (1, 1), i.e., 2024 ≈ 2020, the ad effect is insignificant

After: (Γ0, Γ1) ∈ C, i.e., 2024 ̸= 2020 with a plausible change, the ad effect can be significant and positive

Philadelphia is sensitive to a significant and positive ad effect.
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Data Analysis: Ad Effect Across Counties

▶ If 2024 ≈ 2020, i.e., (Γ0, Γ1) = (1, 1), the digital ads against Trump decreases turnout in Fulton county
• Trump had 86.03% of votes in Fulton in 2024 (highest margin among counties in PA)
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Data Analysis: Ad Effect Across Counties

If 2024 ̸= 2020 with a plausible change (Γ0, Γ1) ∈ C:
▶ Some conclusions may change within the calibrated region C (i.e., sensitive effects)

• Philadelphia county is sensitive to a significant and positive effect
• Fulton county is sensitive to an insignificant effect
• 59 counties is sensitive to a significant and negative effect

▶ 6 counties remain to have an insignificant effect (i.e., insensitive effects)
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Data Analysis: Ad Effect Across Counties

The direction of the ad effect after calibration roughly corresponds to Trump’s share of votes in the 2024
U.S. presidential election.
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Summary

▶ Motivation: From [Aggarwal et al. 2023], would ads against Trump in 2020 remain ineffective in 2024?

▶ Our approach: transfer learning with sensitivity analysis
• (a) simple plug-in estimator with bootstrap SE/CIs, (b) efficient influence function based approach
(see paper), (c) calibration of sensitivity parameter Γa with source data

▶ Application: would ads against Trump be effective for PA voters in 2024?
County-by-county analysis:
• Under (Γ0, Γ1) = (1, 1), the ad effect is significant and negative in Fulton county
• With the calibrated sensitivity analysis, the direction of sensitive ad effects roughly corresponds
to Trump’s share of votes in the 2024

Subgroup analysis: see paper

Preprint: arXiv:2411.01100
Contact: xinran.miao@wisc.edu

Acknowledgements: Xiaobin Zhou (UW-Madison), Adeline Y. Lo (UW-Madison), Sameer Deshpande
(UW-Madison), Chan Park (UIUC), Melody Huang (Yale), Ying Jin (Harvard), UW-Madison statistics
student seminar participants (April 29, 2024), OCIS participants (April 30, 2024), ACIC participants (May 15,
2024), MEAD participants (February 14, 2025).
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FAQs About Data

▶ Is the voting data self-reported?
No. See [Aggarwal et al. 2023] for details.

▶ Does the data contain which candidate the voter voted for?
No.

▶ Why is your voter data discrete?
We’re not sure. Perhaps, this is done to preserve some privacy?

▶ Is party registration measured accurately?
Yes and no. [Aggarwal et al. 2023] and current voter registration data documentation discuss some
reasons for errors.

▶ How was the treatment randomized?
The randomization was stratified within gender, race, and age groups with the intention of increasing
the propensity for women, black, and young people. The average treatment probability was 85.6%.

▶ Why is there a high proportion of treated individuals?
We’re not sure. Perhaps Acronym wanted to deliver the ads against Trump to as many voters as
possible?
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FAQs About Data

▶ Was the randomization done through Facebook/Meta?
No. Our understanding from [Aggarwal et al. 2023] is that the participants were randomized before
the advertising company delivered the ads.

▶ Were ads delivered?
Yes and no. 60% of the treatment group participants were identified and served ads. The analysis was
intention-to-treat. See [Aggarwal et al. 2023] for details. We followed [Aggarwal et al. 2023] and
considered intention-to-treat effect.
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FAQs About Framework And Assumptions

▶ Is SUTVA violated?
Great question! It is possible, especially if
• Different doses of ads: Y(700 ads) ̸= Y(800 ads) ̸= Y(1)
• Different ads in 2020 and 2024: Y(ad in 2020) ̸= Y(ad in 2024)
• Voters talk to each other due to ads: Y(my trt, your trt) ̸= Y(my trt)
• There are carry-over effects from 2020 ad campaign into 2024

But, we also picked 2020 and 2024 to minimize SUTVA violations as Trump remains the Republican
candidates between the two years.

▶ Is your population infinite?
Excellent question! Our framework implicitly assumes that the units in the target and the source data
are sampled from an infinite population of voters. But, it may be more appropriate to treat the PA
voter registration database as a finite population or a large sample from a finite population. See [Jin
and Rothenhäusler 2024] for transfer learning when the target sample is fixed. We are also happy to
discuss more.
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FAQs About Framework And Assumptions

▶ Is the data from 2020 independent from 2024?
Excellent question! Theoretically, this concern is a bit tricky to address, especially if 2024 is a fixed,
census-level data. We’re happy to talk more about this.
Application-wise, we repeated the analysis after excluding voters in PA, WI, MI from the source data.
Results exhibit similar patterns but are less powerful (see Appendix of the paper). Although this
ensures independence between the source and target, it also increases the difference between the
source and target. We believe that in general the source and target should be as similar as possible, so
we decided to report the results when using all data in [Aggarwal et al. 2023] as the source.

▶ What about treating this data as longitudinal?
Excellent idea, but this requires measuring same voter over time. This data is not easy to get.

4 / 29



FAQs About Sensitivity Analysis

▶ Can you give us some understanding on the odds ratio?
Yes. The turnout in PA is 76.5% in 2020 and 76.6% in 2024. The odds ratio is roughly 1.0055 (logarithm:
0.0055).

▶ Can the sensitivity model depend on covariates?
Yes. While this introduces more complexity in interpreting the sensitivity parameters, it could be
useful if there is a priori knowledge about how the ad effects in 2024 and 2020 differ with respect to
measured covariates. For example, for A = 0, we can define

ΓDemocrat?I(Democrat?), ΓRepublican?I(Republican?)

if we believe the change between 2020 and 2024 is different for Democrats and Republicans. We call
this a local sensitivity model.
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FAQs About Analysis

▶ Is your conclusion valid after Biden dropped out?
Great question! Our original analysis plan assumed that President Biden is the Democratic Party’s
nominee for the presidency. While we believe the interpretations from our analysis about ads will still
be plausible since Trump is the nominee for the Republication party and the digital ad campaign
consists of negative ads against Trump, we caution readers from over-interpreting the results.
Notably, our calibration procedure based on rust belt and sun belt states could under-estimate the
dramatic shift in electoral context after Biden dropped out of the race and the consequences of this
unprecedented event in American politics.

▶ Is your conclusion sensitive to data quality from 2024 voter registration data (i.e. target data)?
Yes. Unfortunately, high quality target data is expensive.
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FAQs About Calibration

▶ Can you explain the shape of your calibrated region?
Sure. The off-diagonal area represents case when |Γ1 − Γ0| is large, i.e., when the change in treated
voters differs a lot from the change in control voters from 2020 to 2024.
• It can be unrealistic when Γ1 > 1 is very high and Γ0 < 1 is very low
• The calibration rules out such extreme scenarios
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Example Political Ads in Treatment Group

Ads were on Facebook, Instagram, and Outbrain advertising network.

(a): ads promoting news stories (b): traditional video campaign ads
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Some Prior Works

The closest related literature is transportability/generalizability.

We are definitely not the first nor only ones to incorporate sensitivity analysis in
transportability/generalizability. A very small, partial list:
▶ Linear outcome sensitivity model: [Nguyen et al. 2017; Dahabreh, Petito, et al. 2020; Dahabreh, Robins,

S. J.-P. Haneuse, et al. 2023; Zeng et al. 2023]
▶ Exponential tilting sensitivity model: [Dahabreh, Robins, S. J. Haneuse, Robertson, et al. 2022]
▶ Marginal sensitivity model for domain adaptation: [Nie, Imbens, and Wager 2021]
▶ Omitted variable bias approach with weighted estimators: [Huang 2024]

Our goal is to tailor these methods to address our key question.
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Notation and Causal Assumptions

▶ Population type: S ∈ {0, 1} where S = 1 is source (e.g. 2020) and S = 0 is target (e.g. 2024 PA voters)
▶ Outcome: Y ∈ {0, 1} where Y = 1 is voted
▶ Treatment: A ∈ {0, 1} where A = 1 is ad against Trump
▶ Covariates: X ∈ Rp where

• Source covariates: X
• Target covariates: V ⊂ X
V = (age group, gender, party, part of voting history)
X = V + (race, missing voting history)

▶ Potential outcomes: Y(a) ∈ {0, 1}, a ∈ {0, 1}
• Y(1): voted if, potentially contrary to fact, voter received ads
• Y(0): voted if, potentially contrary to fact, voter didn’t receive ads

▶ Causal estimand: θ = E[Y(1)− Y(0) | S = 0]
• Average treatment effect; the ad effect on turnout among 2024 PA voters
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Data Table for Our Setup

X︷ ︸︸ ︷
S V X \ V A Y(1) Y(0) Y

Source RCT (i.e. 2020)

1 ✓ ✓ 1 ✓ ✓
...

...
...

...
...

...
1 ✓ ✓ 1 ✓ ✓
1 ✓ ✓ 0 ✓ ✓
...

...
...

...
...

...
1 ✓ ✓ 0 ✓ ✓

Target (i.e. 2024 PA voters)
0 ✓
...

...
0 ✓

The goal is to identify and estimate θ = E[Y(1)− Y(0) | S = 0].
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Review Of Transportability In RCT: Assumptions On The Source (S = 1)

Causal assumptions on the source (under stratified RCT):

(A1) Stable unit treatment value assumption (SUTVA):
Under S = 1, if A = a, Y = Y(a)

• The observed Y is one realization of the two potential outcomes
• There are no multiple versions of treatment, e.g.,

Y(700 ads) = Y(800 ads) = Y(1)
• There is no interference: a voter’s voting result cannot be affected by other voters’ treatments

(A2) Randomized treatment: A ⊥ Y(1),Y(0) | X, S = 1

(A3) Overlap of treatment: 0 < π(x) = pr(A = 1 | X = x, S = 1) < 1
• The treated individuals and untreated individuals have a common support of X
• The propensity score π(x) is known in an RCT

(A2)-(A3) are satisfied with the 2020 RCT by [Aggarwal et al. 2023].
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Review Of Transportability In RCT: Assumptions For Transportation

(A4) Overlap between source and target: 0 < pr(S = 1 | V = v) < 1 for all v
• The source voters and target voters have a common support of V
• It can be empirically verified

(A5) Transportability: Y(1),Y(0) ⊥ S | V
• pr(Y(a) = 1 | V, S = 0)︸ ︷︷ ︸

2024 PA voters

= pr(Y(a) = 1 | V, S = 1)︸ ︷︷ ︸
2020 RCT

• It is often assumed, but cannot be verified
• We assume it for this short review, but will relax it shortly

See [Tipton and Peck 2017; Dahabreh, Robins, S. J. Haneuse, and Hernán 2019; Egami and Hartman 2023;
Degtiar and Rose 2023] for details.
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Review: Identification Under (A1)-(A5)

Let µa = E[Y | X,A = a, S = 1]. Under (A1)-(A5), the target ATE θ is identified:

θ = E[Y(1)− Y(0) | S = 0]

= E[E[µ1(X)− µ0(X)︸ ︷︷ ︸
CATE(X) in source

| V, S = 1]

︸ ︷︷ ︸
CATE(V) in source

| S = 0]

︸ ︷︷ ︸
Reweigh CATE(V) to target

For reference, when X = V, we have

θ = E[E[µ1(X)− µ0(X) | S = 0].

In other words, when source and target covariates differ, we have more nuisance parameters (i.e. projection
of CATE(X) onto V); see recent work by [Zeng et al. 2023].
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What If Transportability (A5) Fails? Sensitivity Analysis

Suppose transportability (A5) does not hold:

pr(Y(a) | V, S = 0)︸ ︷︷ ︸
2024 (i.e., target)

̸= pr(Y(a) | V, S = 1)︸ ︷︷ ︸
2020 (i.e., source)

For each Y(a), we measure the deviation between the two probabilities via Γa:

Γa =
Odd(Y(a) | v, S = 0)
Odd(Y(a) | v, S = 1)

, Γa > 0 (1)

Odd(Y(a) | v, s) = pr(Y(a) = 1 | V = v, S = s)
1− pr(Y(a) = 1 | V = v, S = s)

, s ∈ {0, 1} (2)

Broadly speaking, the unobservable part (S = 0; i.e., 2024) differs from the observable part (S = 1; i.e., 2020)
by Γa.
▶ Γa = 1 means pr(Y(a) | V, S = 0) = pr(Y(a) | V, S = 1); i.e., transportability
▶ In general, a large |Γa − 1| ⇒ a large difference between 2020 and 2024
▶ Since the red part is unobserved, Γa cannot be estimated. Instead, Γa is a sensitivity parameter chosen

to quantify the difference between the target and the source
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Some Remarks On The Sensitivity Model

Γa =
Odd(Y(a) | v, S = 0)
Odd(Y(a) | v, S = 1)

Some remarks:

▶ The sensitivity model does not place any observable restrictions on the data [Robins, Rotnitzky, and
Scharfstein 2000; Franks, D’Amour, and Feller 2020]

▶ A pseudo-R2 version of Γa is in Proposition 3 of [Franks, D’Amour, and Feller 2020].
▶ We can also reparametrize the sensitivity model in terms of P(S = 1 | Y(1),Y(0),V = v); see

Appendix and [Carroll et al. 1997].
▶ The sensitivity model can depend on covariates (e.g. exp(Γ⊺vv+ ...); “local” sensitivity analysis)
▶ Some works that use this model: [Robins, Rotnitzky, and Scharfstein 2000; Franks, D’Amour, and Feller

2020; Scharfstein et al. 2021; Dahabreh, Robins, S. J. Haneuse, Robertson, et al. 2022]
▶ There is a long and healthy discussion about what constitutes a “good” model for sensitivity analysis

[Robins 2002; Rosenbaum 2002]
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Alternate Parametrization of The Sensitivity Model

▶ The sensitivity model Γa =
Odd(Y(a) | v, S = 0)
Odd(Y(a) | v, S = 1)

implies the following partially linear logistic

regression model [Carroll et al. 1997]:

pr(S = 1 | Y(a) = y,V = v) = expit (− log(Γa)y − ηa(v))

ηa(v) = log

(
pr(S = 0)
pr(S = 1)

w(v)
E{Γa exp(Y(a)) | v, S = 1}

)
w(V) = p(V | S = 0)/p(V | S = 1)

17 / 29



Identification Under (A1)-(A4) + Sensitivity Model

Again, let µa(X) = E(Y | X,A = a, S = 1). Under (A1)-(A4) and the sensitivity model, we have

E[Y(a) | S = 0] = E

[
E{Γaµa(X) | V, S = 1}

E{Γaµa(X) + 1− µa(X) | V, S = 1}

∣∣∣∣∣S = 0

]
.

▶ It is an exponential tilt of ρa(V) = E[µa(X) | V, S = 1]
▶ If Γa = 0 (i.e. transportability (A5) holds), we return to the previous result:

E[Y(a) | S = 0] = E[E[µa(X) | V, S = 1] | S = 0]
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Estimation: Simple, Plug-In Estimator

Identification leads to a simple, plug-in estimator:
1. Estimate ρa(V) = E[µa(X) | V, S = 1] from source data

• An example: for a = 1, regress Y/π̂(X) on V to get ρ̂1(V)
rho1 <- lm(Y ~ AgeGroup + Gender + Party,

data = source |> filter(a == 1), weights = 1 / pi)

rho0 <- lm(Y ~ AgeGroup + Gender + Party,
data = source |> filter(a == 0), weights = 1 / (1 - pi))

• Because source is an RCT, ρa(V) can be consistently estimated
2. Average the exponentially tilted ρa(V) among target sample

Ê[Y(a) | S = 0] =
1
nt

∑
i∈Target

Γaρ̂a(Vi)

Γaρ̂a(Vi) + 1− ρ̂a(Vi)

θ̂(Γ1, Γ0) = Ê[Y(1) | S = 0]− Ê[Y(0) | S = 0]

rho1pred <- predict(rho1, data = target)
rho0pred <- predict(rho0, data = target)
theta <- Gamma1 * rho1pred / (Gamma1 * rho1pred + 1 - rho1pred) -

Gamma0 * rho0pred / (Gamma0 * rho0pred + 1 - rho0pred)

19 / 29



Bootstrapping for Transfer Learning

In general, bootstrapping is easy and convenient for estimating SEs or confidence intervals (CIs). Here, we

lay out one (theoretically valid) bootstrap for transfer learning with sensitivity analysis. In each bootstrap

iteration b ∈ {1, · · · ,B}:
1. Resample source data with replacement of size ns , obtain data D∗

S
2. Resample target data with replacement of size nt , obtain data D∗

T .

3. With D∗
S and D∗

T , construct the ATE estimator θ̂∗b from above.

Take α/2 and 1− α/2 quantiles of
{
θ̂∗b

}B

b=1
as a 1− α CI of θ.

Theorem: If ρa(V) is smooth enough and Donsker condition holds, the above procedure yields a valid
1− α CI of θ.
The smoothness + Donsker conditions hold for our discrete voter data.

20 / 29



EIF-Based Estimator (Brief Introduction)

For given Γa, we have the efficient influence function (EIF) of θ and it directs an EIF-based estimator.
▶ Four nuisance functions: (i) propensity score π(X), (ii) outcome regression µa(X), (iii) projection of

outcome regression ρa(V), and (iv) population weights w(V) = pr(V | S = 0)/pr(V | S = 1)
▶ The efficient influence function (EIF) is

EIF(Oi, θa(Γa)) =
Siw(Vi)

pr(Si = 1)
Γa

[Γaρa(Vi) + 1− ρa(Vi)]2

[{
Ai

π(Xi)
+

1− Ai

1− π(Xi)

}
{Yi − µa(Xi)}

+ µa(Xi)− ρa(Vi)

]
+

1− Si
pr(Si = 0)

[
Γaρa(Vi)

Γaρa(V) + 1− ρa(Vi)
− θa(Γa)

]

▶ Our EIF recovers [Zeng et al. 2023]’s EIF when Γa = 1:

EIF(Oi, θa(Γa)) =
Siw(Vi)

pr(Si = 1)

[{
Ai

π(Xi)
+

1− Ai

1− π(Xi)

}
{Yi − µa(Xi)} + µa(Xi)− ρa(Vi)

]
+

1− Si
pr(Si = 0)

ρa(Vi)
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EIF-Based Estimator (High-Level Remarks)

Some remarks:
▶ Practically speaking, the estimator is useful if V is continuous
▶ To avoid parametric assumptions, we need cross-fitting
▶ The estimator is not doubly robust when Γa ̸= 0; see Appendix D of [Dahabreh, Robins, S. J. Haneuse,

Robertson, et al. 2022] for a related comment when V = X
▶ EIF-based estimator does not reduce the “plug-in bias” from ρa(V) when Γa ̸= 1
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EIF-Based Estimator (Cross Fitting)

We follow the modern trend in causal inference where we use cross-fitting [Chernozhukov et al. 2017;
Kennedy 2022] and the EIF to estimate θa(Γa).

1. Randomly partition the source and target sample indices Is and It into K disjoint sets, I(k)
s and I(k)

t ,
respectively, for k = 1, 2, · · · ,K with some pre-specified integer K .

2. For each k, estimate nuisance functions with data in I \ I(k) and denote them as π̂(k)(x), µ̂(k)
a (x),

ŵ(k)(v) and ρ̂
(k)
a (v). Plug them into the “uncentered” EIF and evaluate it with the data in I(k), i.e.,

θ̂
(k)
EIF,a(Γa) =

1

|I(k)
s |

∑
i∈I(k)

s

Γaŵ(k)(Vi)

[Γaρ̂
(k)
a (Vi) + 1− ρ̂

(k)
a (Vi)]2

[{
Ai

π̂(k)(Xi)
+

1− Ai

1− π̂(k)(Xi)

}
{Yi − µ̂(k)

a (Xi)}

+ µ̂(k)
a (Xi)− ρ̂(k)a (Vi)

]
+

1

|I(k)
t |

∑
i∈I(k)

t

Γaρ̂
(k)
a (Vi)

Γaρ̂
(k)
a (Vi) + 1− ρ̂

(k)
a (Vi)

.

3. Take an average of θ̂(k)EIF,a(Γa) to arrive at the EIF-based cross-fitting estimator of θEIF,a(Γa), which we

denote as θ̂EIF,a(Γa) =
∑K

k=1 θ̂
(k)
EIF,a(Γa)/K .
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EIF-Based Estimation

Theorem 1
Suppose regularity assumptions hold. Then we have
(i) [Conditional Double Robustness]. Suppose ρ̂(k)a is a consistent estimator of ρ(k)a . Then, θ̂EIF,a(Γa) →p θa(Γa)
if

∥π̂(k)(Xi)− π(k)(Xi)∥ · ∥µ̂(k)
a (Xi)− µ(k)

a (Xi)∥ = op(1), (3)

(ii) [Asymptotic normality and Semiparametric Efficiency] Suppose ρ̂(k)a , µ̂(k)
a , ŵ(k), and π̂(k) are consistent

estimators with the following rates:

∥π̂(k)(Xi)− π(k)(Xi)∥ · ∥µ̂(k)
a (Xi)− µ(k)

a (Xi)∥ = op(n−1/2), (4a)

∥ŵ(k)(Vi)− w(k)(Vi)∥ · ∥ρ̂(k)a (Vi)− ρ(k)a (Vi)∥ = op(n−1/2), and (4b)

∥ρ̂(k)a (Vi)− ρ(k)a (Vi)∥2 = op(n−1/2). (4c)

Then,
√
n
{
θ̂EIF,a(Γa)− θa(Γa)

}
→d N

(
0, σ2

EIF,a(Γa)
)
where σ2

EIF,a(Γa) = E[{EIF(Oi, θa(Γa))}2].
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EIF-Based Estimation

Theorem 2 (EIF-Based Estimation, Continued)

(iii) [Consistent Estimator of Standard Error] Suppose the same assumptions in (ii) hold. Then,

σ̂2
EIF,a(Γa) →p σ

2
EIF,a(Γa), where σ̂

2
EIF,a(Γa) = K−1∑K

k=1
1

|I(k)|
∑

i∈I(k)

{
ÊIF

(k)
(Oi, θ̂EIF,a(Γa))

}2
and

ÊIF
(k)

(Oi, θ̂EIF,a(Γa)) is the empirical counterpart of EIF(k)(Oi, θ̂EIF,a(Γa)) with plug-in estimates of the
nuisance parameters π̂(k), ρ̂(k)a , ŵ(k), and µ̂(k)

a .
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Data Analysis: Registered Voters in Pennsylvania (PA)

▶ Target population: 4,880,730 registered voters (as of April 15, 2024) from 67 counties in PA
▶ V: age group, gender, party, an incomplete voting history
▶ X : V + race and missing voting history
▶ We performed a county-by-county analysis and a subgroup analysis for groups defined through

gender, urbanicity, and education attainment in the neighborhood
▶ For sensitivity parameters, we use 0.951 ≤ Γa ≤ 1.051.
▶ For inference, we use the simple plug-in estimator with bootstrap
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Voter Demographics Between Source and Target Population

Figure. Registered voter demographics.
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Comparison Between Estimators

Comparison between the OR and EIF-based estimators for estimating ad effects for every county in PA.
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Data Analysis: Ad Effect In Subgroups

▶ We consider 20 subgroups defined by a three-way interaction between
• gender (female & male)
• urbanicity of the census tract (rural & urban, obtained from U.S. Census)
• % of Bachelor’s degree or higher in the same zip-code area (five levels, obtained from U.S. Census)
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