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Background

“Science is about generalization, and generalization requires that conclusions obtained in the labora-
tory be transported and applied elsewhere” (Pearl and Bareinboim 2014)

R Covariate X Outcome Y

Source (n)
1 x1 y1
...

...
...

1 xn yn

Target (m)
0 xn+1
...

...
0 xn+m

Goal
Estimate the mean outcome on target: β = E(Y | R = 0).
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Popular Assumption: Transportability

Transportability assumption between source (R = 1) and target (R = 0)

To identify β = E(Y | R = 0), it’s common to assume “transportability”,

p(y | x,R = 0) = p(y | x,R = 1), (1)

which allows for covariate shift

p(x | R = 0) ̸≡ p(x | R = 1).

Under (1),

β = E(Y | R = 0)

= E
{

E(Y | X, R = 0) | R = 0
}

= E
{

E(Y | X, R = 1) | R = 0
}

can be identified.

Unfortunately, assumption (1) cannot be verified from data.
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Outline

1 Transportability Index and Its Estimation

2 Data Application on Transportations between ICUs
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Sensitivity Model

To quantify the violations of the transportability assumption, we adopt the selection odds model with an
exponential tilting shift (Robins 2000; AlexanderM. Franks and Feller 2020; Scharfstein et al. 2021; Dahabreh
et al. 2022),

p(y | x,R = 0)︸ ︷︷ ︸
target

∝ exp(γy) p(y | x,R = 1)︸ ︷︷ ︸
source

. (2)

▶ When γ = 0, (2) reduces to the transportability assumption (1).
▶ When γ ̸= 0, p(y | x,R = 0) deviates from p(y | x,R = 1). The magnitude of deviation is calibrated by

γ.
▶ For example, suppose p(y | x,R = 1) = Normal(0, σ2), then p(y | x,R = 0) = Normal(γσ2, σ2).
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Sensitivity Model

To quantify the violations of the transportability assumption, we adopt the selection odds model with an
exponential tilting shift (Robins 2000; AlexanderM. Franks and Feller 2020; Scharfstein et al. 2021; Dahabreh
et al. 2022),

p(y | x,R = 0)︸ ︷︷ ︸
target

∝ exp(γy) p(y | x,R = 1)︸ ︷︷ ︸
source

. (2)

▶ Under (2), the target outcome mean β = E(Y | R = 0) becomes a function of γ,

β(γ) = E

[
E{Y exp(γY) | X,R = 1}
E{exp(γY) | X,R = 1}

∣∣∣∣∣R = 0

]
.

▶ When γ = 0,

β(0) = E{E(Y | X,R = 1) | R = 0},
which reduces to the case when the transportability assumption (1) holds.
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Transportatility Index

Definition 1 (Transportability Index)

We define transportability index as the derivative of β(γ) with respect to γ evaluated at γ = 0:

λ =
∂β(γ)

∂γ

∣∣∣∣∣
γ=0

.

▶ It quantifies how a small change in γ (near zero) influences the target estimand.
▶ When |λ| ≈ 0, a slight deviation from the transportability assumption does not change the estimand.
▶ When |λ| is far from zero, a slight deviation from the transportability assumption leads to a dramatic

change in the estimand.
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Transportatility Index

▶ More heterogeneity in the source population⇒ more sensitive to violations of the transportability
assumption.

▶ It matches existing intuition about ease of generalizability when the treatment effect is homogeneous
(Tipton and Olsen 2018).

Revisiting the normal example, p(y | x,R = 1) = Normal(0, σ2).
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Transportability Index

λ =
∂β(γ)

∂γ

∣∣∣∣∣
γ=0

Relations to existing literature

▶ Relates to the influence curve in robust statistics (Huber 1964; Hampel 1974), but at an estimand level
with respect to the sensitivity parameter γ.

▶ Relates to the sensitivity analysis (Robins 2000; AlexanderM. Franks and Feller 2020), providing a
scalar summary of the sensitivity to violations of the transportability assumption.

Universiality of the transportability index

▶ Extends beyond the exponential tilting function exp(γy)⇒ any function ρ(y, x; γ) with ρ(y, x; 0) = 1.
▶ Extends beyond the outcome mean⇒ any parameter β defined through estimating equations (e.g.,

median, GLM, GMM, GEE).

For simplicity, this talk focuses on the transportability index for the outcome mean.
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Transportability Index for Outcome Mean

For the mean of the outcome in the target population, the transportability index simplifies to

λ =E{w(X)var(Y | X,R = 1) | R = 1},

where w(x) = p(x | R = 0)/p(x | R = 1).

The transportability index depends on

▶ var(Y | x,R = 1), the heteroskedasticitiy of the outcome variance in the source population, and
▶ w(x), the covariate shift between the source and the target populations.
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Estimation

Motivated by λ = E{w(X)var(Y | X,R = 1) | R = 1}, we propose to estimate λ by

λ̂ =
1
n

n∑
i=1

ŵ(xi){yi − µ̂(xi)}2, where (3)

▶ i = 1, · · · , n indexes source samples,
▶ ŵ(x) = n · p̂r(R = 0 | x)/{m · p̂r(R = 1 | x)}, and
▶ µ̂(x) = Ê(Y | x,R = 1) is the outcome regression fitted from the source sample.
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Outline

1 Transportability Index and Its Estimation

2 Data Application on Transportations between ICUs

Miao, Zhao & Kang Transportability Index 10 / 16



Application on Robustness Diagnostics

MIMIC-III database contains hospital admission information of adult patients admitted to five types of
critical care units between 2001 and 2012 (Johnson et al. 2016).

Source indicator R: initial care unit
▶ Source: Medical Intensive Care Unit (n = 14, 824).
▶ Target:

• Cardiac Surgery Recovery Unit (m = 7, 865),
• Trauma Surgical Intensive Care Unit (m = 4, 727).

Outcome Y

▶ SAPS II score: Simplified Acute Physiology Score
▶ It ranges from 0 to 163. The higher, the worse.

Goal: estimate the average SAPS II score in a target ICU

Covariate X
▶ 14 variables including demographics, chart events (e.g., body temperature) and laboratory tests (e.g.,

red blood cell count).
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Transportability Across Critical Care Units

Miao, Zhao & Kang Transportability Index 12 / 16



Summary

▶ This talk addresses the question of how sensitive an estimand is to violations of the transportability
assumption.

▶ We propose a scalar summary, the transportability index, measuring the change in the estimand with
respect to a small perturbation to the transportatibility assumption,

λ =
∂β(γ)

∂γ

∣∣∣∣∣
γ=0

.

▶ Investigators can use this tool to diagnose whether their estimation problem is robust to violations of
the transportability assumption.

▶ Future work: quantifying robustness of different estimands/policies with respect to the
transportability assumption.
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THANK YOU!

xinran.miao@wisc.edu

https://xinranmiao.github.io
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Exponential Tilting Function

▶ Under the exponential tilting shift,

p(y | x,R = 0)︸ ︷︷ ︸
target

∝ exp(γy) p(y | x,R = 1)︸ ︷︷ ︸
source

, (2)

one can write

pr(R = 1 | y, x) = 1
1+ exp{γy + h(x)}

, (4)

where h(x) = log

(
p(x | R = 0)

p(x | R = 1)E{exp(γY)Y | x,R = 1}

)
is a function of x only.

▶ From (4), the selection probability of being in the source population is related to (y, x) via a partially
linear logistic regression model (Carroll et al. 1997).
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Transportability Index for Parameters in Estimating Equations

▶ Consider a q-dimensional parameter of interest β defined through

E{ξ(Y ,X;β) | R = 0} = 0.

▶ To study the sensitivity of the estimand to the transportability assumption (1), we assume,

p(y | x,R = 0) ∝ ρ(y, x; γ)p(y | x,R = 1), where

ρ(y, x; γ) is a user-defined sensitivity function with ρ(y, x; γ) = 0, e.g., ρ(y, x; γ) = exp(γy).
▶ The estimand on the target is now coded as β(γ), which is the solution to

E

[
E{ξ(Y ,X;β(γ))ρ(Y ,X; γ) | X,R = 1}

E{ρ(Y ,X; γ) | X,R = 1}

∣∣∣∣∣R = 0

]
= 0.

▶ The transportability index is defined as the derivative of β(γ) with respect to γ evaluated at γ = 0:

λ =
∂β(γ)

∂γ

∣∣∣∣∣
γ=0

= −M−1E
{
Cov

(
ξ,

∂ρ

∂γ
|γ=0 | X,R = 1

)
| R = 0

}
,

where M = E
{
E
(

∂ξ
∂β | X,R = 1

)
| R = 0

}
is assumed invertible.
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Estimating β(γ)

Noticing that

β(γ) = E

[
w(X)

E{Y exp(γY) | X,R = 1}
E{exp(γY) | X,R = 1}

∣∣∣∣∣R = 1

]
,

we propose to estimate β(γ) with

β̂(γ) =
1
n

n∑
i=1

ŵ(xi)
exp(γyi)yi

Ê{exp(γY) | xi,R = 1}
,

where we recall w(x) = p(x | R = 0)/p(x | R = 1) can be estimated by n · p̂r(R = 0 | x)/{m · p̂r(R = 1 | x)}.
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MIMIC III Data Application

Table. Covariate description in MIMIC III data

Type Name Description
Demographics age Age of a patient

gender Gender of a patient
Chart events diasbp_mean Diastolic blood pressure (on average)

glucose_mean Blood glucose (on average)
resprate_mean Respiratory rate per minute (on average)
sysbp_mean Systolic blood pressure (on average)
temp_mean Body temperature (on average)
hr_mean Heart rate per minute (on average)

Laboratory Tests hemotocrit_mean Hematocrit level (on average)
platelets_mean Platelets count (on average)
redbloodcell_mean Red blood cell count (on average)
whitebloodcell_mean White blood cell count (on average)
urea_n_mean Blood urea nitrogen (on average)
calcium_mean Calcium level in blood (on average)
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